Regularity of distributional differential algebraic equations
نویسنده
چکیده
Differential algebraic equations (DAEs) of the form Eẋ = Ax + f are considered. The solutions x and the inhomogeneities f are assumed to be distributions (generalized functions). As a new approach, distributional entries in the coefficient matrices E and A are allowed, in particular, this encompasses the case where the coefficient matrices are time-varying but not continuous. Since a multiplication for general distributions is not possible, the smaller space of piecewise-smooth distributions is introduced. A restriction can be defined for the space of piecewise-smooth distributions, this restriction is used to study DAEs with inconsistent initial values; basically, it is assumed that some past trajectory for x is given and the DAE is activated at some initial time. If this initial trajectory problem always has a unique solution, then the DAE is called regular. This generalizes the regularity for classical DAEs (i.e. a DAE with constant coefficients).
منابع مشابه
The distributional Henstock-Kurzweil integral and measure differential equations
In the present paper, measure differential equations involving the distributional Henstock-Kurzweil integral are investigated. Theorems on the existence and structure of the set of solutions are established by using Schauder$^prime s$ fixed point theorem and Vidossich theorem. Two examples of the main results paper are presented. The new results are generalizations of some previous results in t...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملLocal Minimum Principle for Optimal Control Problems Subject to Index One Differential-algebraic Equations
Necessary conditions in terms of a local minimum principle are derived for optimal control problems subject to index-1 differential-algebraic equations, pure state constraints and mixed control-state constraints. Differential-algebraic equations are composite systems of differential equations and algebraic equations, which frequently arise in practical applications. The local minimum principle ...
متن کاملFinding periodic orbits in state-dependent delay differential equations as roots of algebraic equations
In this paper we prove that periodic boundary-value problems (BVPs) for delay differential equations are locally equivalent to finite-dimensional algebraic systems of equations. We rely only on regularity assumptions that follow those of the review by Hartung et al. (2006). Thus, the equivalence result can be applied to differential equations with state-dependent delays (SD-DDEs), transferring ...
متن کاملALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS
Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- MCSS
دوره 21 شماره
صفحات -
تاریخ انتشار 2009